Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recent observations have found a growing number of hypervelocity stars with speeds of ≈1500 − 2500 km s−1that could have only been produced through thermonuclear supernovae in white dwarf binaries. Most of the observed hypervelocity runaways in this class display a surprising inflated structure: their current radii are roughly an order of magnitude greater than they would have been as white dwarfs filling their Roche lobe. While many simulations exist studying the dynamical phase leading to supernova detonation in these systems, no detailed calculations of the long-term structure of the runaways have yet been performed. We used an existing AREPOhydrodynamical simulation of a supernova in a white dwarf binary as a starting point for the evolution of these stars with the one-dimensional stellar evolution code MESA. We show that the supernova shock is not energetic enough to inflate the white dwarf over timescales longer than a few thousand years, significantly shorter than the 105 − 6year lifetimes inferred for observed hypervelocity runaways. Although they experience a shock from a supernova less than ≈0.02 R⊙away, our models do not experience significant interior heating, and all contract back to radii of around 0.01 R⊙within about 104years. Explaining the observed inflated states requires either an additional source of significant heating or some other physics that is not yet accounted for in the subsequent evolution.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract Understanding the evolution of massive binary stars requires accurate estimates of their masses. This understanding is critically important because massive star evolution can potentially lead to gravitational-wave sources such as binary black holes or neutron stars. For Wolf–Rayet (WR) stars with optically thick stellar winds, their masses can only be determined with accurate inclination angle estimates from binary systems which have spectroscopic M sin i measurements. Orbitally phased polarization signals can encode the inclination angle of binary systems, where the WR winds act as scattering regions. We investigated four Wolf–Rayet + O star binary systems, WR 42, WR 79, WR 127, and WR 153, with publicly available phased polarization data to estimate their masses. To avoid the biases present in analytic models of polarization while retaining computational expediency, we used a Monte Carlo radiative-transfer model accurately emulated by a neural network. We used the emulated model to investigate the posterior distribution of the parameters of our four systems. Our mass estimates calculated from the estimated inclination angles put strong constraints on existing mass estimates for three of the systems, and disagree with the existing mass estimates for WR 153. We recommend a concerted effort to obtain polarization observations that can be used to estimate the masses of WR binary systems and increase our understanding of their evolutionary paths.more » « less
-
Abstract We study the production of very light elements (Z< 20) in the dynamical and spiral-wave wind ejecta of binary neutron star mergers by combining detailed nucleosynthesis calculations with the outcome of numerical relativity merger simulations. All our models are targeted to GW170817 and include neutrino radiation. We explore different finite-temperature, composition-dependent nuclear equations of state, and binary mass ratios, and find that hydrogen and helium are the most abundant light elements. For both elements, the decay of free neutrons is the driving nuclear reaction. In particular, ∼0.5–2 × 10−6M⊙of hydrogen are produced in the fast expanding tail of the dynamical ejecta, while ∼1.5–11 × 10−6M⊙of helium are synthesized in the bulk of the dynamical ejecta, usually in association with heavyr-process elements. By computing synthetic spectra, we find that the possibility of detecting hydrogen and helium features in kilonova spectra is very unlikely for fiducial masses and luminosities, even when including nonlocal thermodynamic equilibrium effects. The latter could be crucial to observe helium lines a few days after merger for faint kilonovae or for luminous kilonovae ejecting large masses of helium. Finally, we compute the amount of strontium synthesized in the dynamical and spiral-wave wind ejecta, and find that it is consistent with (or even larger than, in the case of a long-lived remnant) the one required to explain early spectral features in the kilonova of GW170817.more » « less
-
Abstract A thermonuclear explosion triggered by a He-shell detonation on a carbon–oxygen white-dwarf core has been predicted to have strong UV line blanketing at early times due to the iron-group elements produced during He-shell burning. We present the photometric and spectroscopic observations of SN 2016dsg, a subluminous peculiar Type I supernova consistent with a thermonuclear explosion involving a thick He shell. With a redshift of 0.04, the i -band peak absolute magnitude is derived to be around −17.5. The object is located far away from its host, an early-type galaxy, suggesting it originated from an old stellar population. The spectra collected after the peak are unusually red, show strong UV line blanketing and weak O i λ 7773 absorption lines, and do not evolve significantly over 30 days. An absorption line around 9700–10500 Å is detected in the near-infrared spectrum and is likely from the unburnt He in the ejecta. The spectroscopic evolution is consistent with the thermonuclear explosion models for a sub-Chandrasekhar-mass white dwarf with a thick He shell, while the photometric evolution is not well described by existing models.more » « less
-
Abstract Nebular-phase observations of peculiar Type Ia supernovae (SNe Ia) provide important constraints on progenitor scenarios and explosion dynamics for both these rare SNe and the more common, cosmologically useful SNe Ia. We present observations from an extensive ground- and space-based follow-up campaign to characterize SN 2022pul, a super-Chandrasekhar mass SN Ia (alternatively “03fg-like” SN), from before peak brightness to well into the nebular phase across optical to mid-infrared (MIR) wavelengths. The early rise of the light curve is atypical, exhibiting two distinct components, consistent with SN Ia ejecta interacting with dense carbon–oxygen (C/O)-rich circumstellar material (CSM). In the optical, SN 2022pul is most similar to SN 2012dn, having a low estimated peak luminosity (MB= −18.9 mag) and high photospheric velocity relative to other 03fg-like SNe. In the nebular phase, SN 2022pul adds to the increasing diversity of the 03fg-like subclass. From 168 to 336 days after peakB-band brightness, SN 2022pul exhibits asymmetric and narrow emission from [Oi]λλ6300, 6364 (FWHM ≈ 2000 km s−1), strong, broad emission from [Caii]λλ7291, 7323 (FWHM ≈ 7300 km s−1), and a rapid Feiiito Feiiionization change. Finally, we present the first ever optical-to-MIR nebular spectrum of an 03fg-like SN Ia using data from JWST. In the MIR, strong lines of neon and argon, weak emission from stable nickel, and strong thermal dust emission (withT≈ 500 K), combined with prominent [Oi] in the optical, suggest that SN 2022pul was produced by a white dwarf merger within C/O-rich CSM.more » « less
-
The general theory of relativity predicts that a star passing close to a supermassive black hole should exhibit a relativistic redshift. In this study, we used observations of the Galactic Center star S0-2 to test this prediction. We combined existing spectroscopic and astrometric measurements from 1995–2017, which cover S0-2’s 16-year orbit, with measurements from March to September 2018, which cover three events during S0-2’s closest approach to the black hole. We detected a combination of special relativistic and gravitational redshift, quantified using the redshift parameter ϒ. Our result, ϒ = 0.88 ± 0.17, is consistent with general relativity (ϒ = 1) and excludes a Newtonian model (ϒ = 0) with a statistical significance of 5σ.more » « less
-
Abstract We present JWST near-infrared (NIR) and mid-infrared (MIR) spectroscopic observations of the nearby normal Type Ia supernova (SN) SN 2021aefx in the nebular phase at +255 days past maximum light. Our Near Infrared Spectrograph (NIRSpec) and Mid Infrared Instrument observations, combined with ground-based optical data from the South African Large Telescope, constitute the first complete optical+NIR+MIR nebular SN Ia spectrum covering 0.3–14μm. This spectrum unveils the previously unobserved 2.5−5μm region, revealing strong nebular iron and stable nickel emission, indicative of high-density burning that can constrain the progenitor mass. The data show a significant improvement in sensitivity and resolution compared to previous Spitzer MIR data. We identify numerous NIR and MIR nebular emission lines from iron-group elements as well as lines from the intermediate-mass element argon. The argon lines extend to higher velocities than the iron-group elements, suggesting stratified ejecta that are a hallmark of delayed-detonation or double-detonation SN Ia models. We present fits to simple geometric line profiles to features beyond 1.2μm and find that most lines are consistent with Gaussian or spherical emission distributions, while the [Ariii] 8.99μm line has a distinctively flat-topped profile indicating a thick spherical shell of emission. Using our line profile fits, we investigate the emissivity structure of SN 2021aefx and measure kinematic properties. Continued observations of SN 2021aefx and other SNe Ia with JWST will be transformative to the study of SN Ia composition, ionization structure, density, and temperature, and will provide important constraints on SN Ia progenitor and explosion models.more » « less
An official website of the United States government
